Candidate's name:	Index No
Signature:	. School:
545/3	
Chemistry	
(Practical)	
Paper 3	
July/August 2019	
(Practical) Paper 3 July/August 2019	

BUGANDA EXAMINATIONS COUNCIL MOCKS

Uganda Certificate of Education

CHEMISTRY (PRACTICAL)

PAPER 3

2HOURS

INSTRUCTIONS TO CANDIDATES:

2hours

- Answer **both** questions. Answers are to be written in the spaces provided in this booklet.
- You are **<u>not</u>** allowed to use any reference books (i.e text books, booklets on qualitative analysis etc.
- All working must be clearly shown
- Mathematical tables and silent non-programmable calculators may be used.

For Examiners Use Only		
Q. 1		
Q. 2		
Total		

1. You are provided with the following;

BA1 which is a 1M solution of an acid **Q**.

R, which is a solution of a basic compound **Y**

You are required to determine the mole ratio of the reaction between **Q** and **Y**.

Procedure

- (a) Measure 60cm³ of **R** using a measuring cylinder and transfer into the 250ml glass beaker. Add about 60cm³ of distilled water and stir to mix well. Label the solution BA2.
- (b) Fill the burette with BA1; run 30cm^3 into plastic beaker, measure and record the initial temperature T_0
- (c) Using a measuring cylinder, transfer 5cm³ of BA2 into the plastic beaker. Stir the mixture using the thermometer and record the maximum temperature **T** reached by the mixture. Wash both the thermometer and the plastic beaker and dry them.
- (d) Repeat procedures (b) and (c) using the sets of volumes of BA1 and BA2 indicated in the table below.
- (e) Record in the same table, the values of T_0 , T and $\Delta T = T T_0$ for each experiment.

(09marks)	
-----------	--

Experiment number	1	2	3	4	5	6
Volume of BA1 (cm ³)						
Volume of BA2 (cm ³)						
Initial temperature To(°C)						
Maximum temperature T(°C)						
$\Delta T = T - T_o (^o C)$						

Question

(a)(i)	Why do we have to use a plastic during this experiment?	(01mark)	
(ii)	State whether the reaction is exothermic or endothermic?	(01mark)	

(b) Plot a graph of △T (along the vertical axis) against volume of BA1 (along the horizontal axis)
(09marks)

(c) From the graph, determine the

(i) maximum value of ΔT (01mark)

corresponding volumes of PA1 and PA2 that gave the maximum value of AT

(ii) corresponding volumes of BA1 and BA2 that gave the maximum value of ▲T. (02marks)

(d) Calculate the mole ratio of the reaction between **Q** and **Y**. (04marks)

2. You are provided with substances **K** which contains two cations and one anion. You are required to identify the cations and anions in **K**. Carryout the following test on **K** to identify the cations and anions. Identify any gases evolved. (25marks)

TESTS	OBSERVATION	DEDUCTION
a) Heat one spatula		
endful of K in a hard		
glass test tube		
strongly until there is		
no fui thei change.		
b) To two spatula endful		
of K add dilute nitric		
acid until there is no		
further change.		
To the resultant		
solution add		
ammonia solution		
aropwise until in		
Keen the residue for		
nart (d)		
c) To the filtrate add		
dilute nitric acid until		
the solution is just		
acidic. Divide the		
resultant solution		
into three portions.		
(i) To the first portion		
add sodium		
hydroxide		
until in excess		
(ii) To the second portion		
add 2-3 drops of		
dilute sulphuric		
acid.		
(iii) To the third		
portion add		
ammonia solution		
aropwise until in		
CALESS.		

5

d) Dissolve the residue	
in dilute nitric acid.	
Divide the resultant	
solution into four	
portions.	
(i) To the first portion	
add sodium	
hydroxide	
solution dropwise	
until in excess.	
(ii) To the second portion	
add ammonia	
solution dropwise	
until in excess.	
(iii) To the third	
portion add 3-4	
drops of dilute	
sulphuric acid and	
warm.	
(iv) Use the fourth	
portion to	
carryout a test of	
your own choice	
to confirm the	
second cation in	
К.	

- (e) Identify the;
- (i) cation in K
- (ii) Anion in K:

END